欢迎来到青岛科技大学化工学院!
当前位置: 首页   >   师资队伍   >   博士生导师   >   正文

王荣方(化工)

作者:    信息来源:    发布时间: 2018-09-30

王荣方

 

个人简介

工作职位:精细化工教研室教授,博士生导师

办公地址:青岛科技大学化学化工大楼(CCE)大楼1502

工作邮箱:rfwang@qust.edu.cn

2008.6年博士毕业于华南理工大学,获得工学博士学位。2010.11-2013.9在厦门大学固体表面物理化学国家重点实验室从事博士后研究;2011.6-2012.11在西开普大学访学;2016.5-2016.11在伦敦大学学院访学;20087月起在西北师范大学化学化工学院工作;2017年至今在青岛科技大学工作。主要从事新型电极材料研发、能源复合功能材料方面的研究。研究方向主要集中在各类金属合金电催化剂的研究和应用、复合金属氧化物的能量储存和转换研究、和碳基复合功能材料研究。以第一或通讯作者发表各类论文一百三十余篇,其中一、二区论文90余篇。以该系列研究为基础已申请专利30余项,授权28项。论文总被引两千一百余次,H因子25

课题组十分重视学生科研素质的培养工作,已指导毕业博士生、硕士生20余人,本科生30余人。近期毕业研究生6人在高校及科研院所工作,2人已获高级职称,9人在读博士(分别在美、德高校和科研院所及复旦、中大、北航等985高校就读)。欢迎有志于能源催化剂储存材料、电化学工程的研究生,本科生加盟开展相关研究工作。

个人荣誉与获奖

1科研成果获奖

[1]  2010年,广东省优秀博士毕业论文;

[2]  2010年,甘肃省高校科技进步一等奖,高分子基功能材料基础研究;

[3]  2011年,教育部高等学校科学研究优秀成果二等奖,质子交换膜燃料电池的应用基础研究;

[4]   2012年,甘肃省高校科技进步一等奖,功能载体材料研究;

[5]  2014年,甘肃省高校科技进步三等奖;

[6]  2016年,甘肃省自然科学奖,二等奖,复合功能材料可控制备及性能研究。

教学情况

1、本科生课程

[1]  化工原理:108学时,本科生,约60人。

[2]  工业催化:32学时,本科生,约30人。

2研究生课程

[1]  催化剂分析测试技术:24学时,硕士研究生,约30

论文、专著与专利

1、主要论文

[1] Yan J, Wang H, Ji S, Pollet BG, Wang R. Achieving highly practical capacitance of MnO2 by using chain-like CoB alloy as support. Nanoscale. 2018;10:7813-20. (工程技术一区,IF:7.233)

[2] Fangshuai C, Shan J, Quanbing L, Hui W, Hao L, L. BDJ, et al. Rational Design of Hierarchically Core–Shell Structured Ni3S2@NiMoO4 Nanowires for Electrochemical Energy Storage. Small. 2018;14:1800791. (工程技术一区,IF:9.598)

[3] Wang H, Ma Y, Wang R, Key J, Linkov V, Ji S. Liquid-liquid interface-mediated room-temperature synthesis of amorphous NiCo pompoms from ultrathin nanosheets with high catalytic activity for hydrazine oxidation. Chem Commun 2015;51:3570-3. (化学一区,IF:6.29)

[4] Wang R, Ma Y, Wang H, Key J, Ji S. Gas-liquid interface-mediated room-temperature synthesis of "clean" PdNiP alloy nanoparticle networks with high catalytic activity for ethanol oxidation. Chem Commun 2014;50:12877-9.

[5] Chen F, Wang H, Ji S, Linkov V, Wang R. Core-shell structured Ni3S2@Co(OH)2 nano-wires grown on Ni foam as binder-free electrode for asymmetric supercapacitors. Chem Eng J 2018;345:48-57. (工程技术一区,IF:6.735)

[6] Chen Y, Wang H, Liu F, Gai H, Ji S, Linkov V, et al. Hydrophobic 3D Fe/N/S doped graphene network as oxygen electrocatalyst to achieve unique performance of zinc-air battery. Chem Eng J 2018;353:472-80.

[7] Wang R, Wang H, Luo F, Liao S. Core–Shell-Structured Low-Platinum Electrocatalysts for Fuel Cell Applications. Electrochemical Energy Reviews. 2018;1:324-87.

[8] Wang R, Liao S, Fu Z, Ji S. Platinum free ternary electrocatalysts prepared via organic colloidal method for oxygen reduction. Electrochem Commun. 2008;10:523-6. (工程技术一区,IF:4.66)

[9] Wang R, Zhang Z, Wang H, Lei Z. Pt decorating PdCu/C as highly effective electrocatalysts for methanol oxidation. Electrochem Commun. 2009;11:1089-91.

[10] Ding J, Ji S, Wang H, Pollet BG, Wang R. Tailoring nanopores within nanoparticles of PtCo networks as catalysts for methanol oxidation reaction. Electrochim Acta. 2017;255:55-62. (工程技术一区,IF:5.116)

[11] Ji S, Ma Y, Wang H, Key J, Brett DJL, Wang R. Cage-like MnO2-Mn2O3 hollow spheres with high specific capacitance and high rate capability as supercapacitor material. Electrochim Acta. 2016;219:540-6.

[12] Jia J, Wang H, Ji S, Yang H, Li X, Wang R. SnO2-embedded worm-like carbon nanofibers supported Pt nanoparticles for oxygen reduction reaction. Electrochim Acta. 2014;141:13-9.

[13] Ma Y, Wang H, Feng H, Ji S, Mao X, Wang R. Three-dimensional iron, nitrogen-doped carbon foams as efficient electrocatalysts for oxygen reduction reaction in alkaline solution. Electrochim Acta. 2014;142:317-23.

[14] Ma Y, Wang H, Ji S, Goh J, Feng H, Wang R. Highly active Vulcan carbon composite for oxygen reduction reaction in alkaline medium. Electrochim Acta. 2014;133:391-8.

[15] Song H, Li H, Wang H, Key J, Ji S, Mao X, et al. Chicken bone-derived N-doped porous carbon materials as an oxygen reduction electrocatalyst. Electrochim Acta. 2014;147:520-6.

[16] Wang H, Liu Z, Ji S, Wang K, Zhou T, Wang R. Ethanol oxidation activity and structure of carbon-supported Pt-modified PdSn-SnO2 influenced by different stabilizers. Electrochim Acta. 2013;108:833-40.

[17] Wang KL, Wang H, Pasupathi S, Linkov V, Ji S, Wang RF. Palygorskite promoted PtSn/carbon catalysts and their intrinsic catalytic activity for ethanol oxidation. Electrochim Acta. 2012;70:394-401.

[18] Wang R, Jia J, Li H, Li X, Wang H, Chang Y, et al. Nitrogen-doped carbon coated palygorskite as an efficient electrocatalyst support for oxygen reduction reaction. Electrochim Acta. 2011;56:4526-31.

[19] Wang R, Li H, Ji S, Wang H, Lei Z. Pt decorating of PdNi/C as electrocatalysts for oxygen reduction. Electrochim Acta. 2010;55:1519-22.

[20] Wang R, Wang H, Li H, Wang W, Key J, Khotseng L, et al. An Fe@Fe3C-inserted carbon nanotube/graphite composite support providing highly dispersed Pt nanoparticles for ethanol oxidation. Electrochim Acta. 2014;132:251-7.

[21] Ren Q, Wang R, Wang H, Key J, Brett DJL, Ji S, et al. Ranunculus flower-like Ni(OH)2@Mn2O3 as a high specific capacitance cathode material for alkaline supercapacitors. Journal of Materials Chemistry A. 2016;4:7591-5. (工程技术一区,IF:9.931)

[22] Wang H, Yan J, Wang R, Li S, Brett DJL, Key J, et al. Toward high practical capacitance of Ni(OH)2 using highly conductive CoB nanochain supports. Journal of Materials Chemistry A. 2017;5:92-6.

[23] Wang R, Ma Y, Wang H, Key J, Brett D, Ji S, et al. A cost effective, highly porous, manganese oxide/carbon supercapacitor material with high rate capability. Journal of Materials Chemistry A. 2016;4:5390-4.

[24] Ding J, Ji S, Wang H, Key J, Brett DJL, Wang R. Nano-engineered intrapores in nanoparticles of PtNi networks for increased oxygen reduction reaction activity. J Power Sources. 2018;374:48-54. (工程技术一区,IF:6.945)

[25] Kang J, Wang H, Ji S, Key J, Wang R. Synergy among manganese, nitrogen and carbon to improve the catalytic activity for oxygen reduction reaction. J Power Sources. 2014;251:363-9.

[26] Li H, Liao J, Zhang X, Liao W, Wen L, Yang J, et al. Controlled synthesis of nanostructured Co film catalysts with high performance for hydrogen generation from sodium borohydride solution. J Power Sources. 2013;239:277-83.

[27] Ma Y, Li H, Wang H, Ji S, Linkov V, Wang R. Ultrafine amorphous PtNiP nanoparticles supported on carbon as efficiency electrocatalyst for oxygen reduction reaction. J Power Sources. 2014;259:87-91.

[28] Ma Y, Li H, Wang H, Mao X, Linkov V, Ji S, et al. Evolution of the electrocatalytic activity of carbon-supported amorphous platinum–ruthenium–nickel–phosphorous nanoparticles for methanol oxidation. J Power Sources. 2014;268:498-507.

[29] Ma Y, Li H, Wang R, Wang H, Lv W, Ji S. Ultrathin willow-like CuO nanoflakes as an efficient catalyst for electro-oxidation of hydrazine. J Power Sources. 2015;289:22-5.

[30] Ma Y, Wang H, Ji S, Linkov V, Wang R. PtSn/C catalysts for ethanol oxidation: The effect of stabilizers on the morphology and particle distribution. J Power Sources. 2014;247:142-50.

[31] Ma Y, Wang H, Key J, Ji S, Lv W, Wang R. Control of CuO nanocrystal morphology from ultrathin “willow-leaf” to “flower-shaped” for increased hydrazine oxidation activity. J Power Sources. 2015;300:344-50.

[32] Ma Y, Wang R, Wang H, Key J, Ji S. Control of MnO2 nanocrystal shape from tremella to nanobelt for ehancement of the oxygen reduction reaction activity. J Power Sources. 2015;280:526-32.

[33] Wang H, Ren Q, Brett DJL, He G, Wang R, Key J, et al. Double-shelled tremella-like NiO@Co3O4@MnO2 as a high-performance cathode material for alkaline supercapacitors. J Power Sources. 2017;343:76-82.

[34] Wang H, Zhang X, Wang R, Ji S, Wang W, Wang Q, et al. Amorphous CoSn alloys decorated by Pt as high efficiency electrocatalysts for ethanol oxidation. J Power Sources. 2011;196:8000-3.

[35] Wang R, Da H, Wang H, Ji S, Tian Z. Selenium functionalized carbon for high dispersion of platinum–ruthenium nanoparticles and its effect on the electrocatalytic oxidation of methanol. J Power Sources. 2013;233:326-30.

[36] Wang R, Li H, Feng H, Wang H, Lei Z. Preparation of carbon-supported core@shell PdCu@PtRu nanoparticles for methanol oxidation. J Power Sources. 2010;195:1099-102.

[37] Wang R, Liao S, Ji S. High performance Pd-based catalysts for oxidation of formic acid. J Power Sources. 2008;180:205-8.

[38] Wang R, Song H, Li H, Wang H, Mao X, Ji S. Mesoporous nitrogen-doped carbon derived from carp with high electrocatalytic performance for oxygen reduction reaction. J Power Sources. 2015;278:213-7.

[39] Wang R, Wang H, Zhou T, Key J, Ma Y, Zhang Z, et al. The enhanced electrocatalytic activity of okara-derived N-doped mesoporous carbon for oxygen reduction reaction. J Power Sources. 2015;274:741-7.

[40] Wang R, Wang K, Wang Z, Song H, Wang H, Ji S. Pig bones derived N-doped carbon with multi-level pores as electrocatalyst for oxygen reduction. J Power Sources. 2015;297:295-301.

[41] Wang R, Zhou T, Li H, Wang H, Feng H, Goh J, et al. Nitrogen-rich mesoporous carbon derived from melamine with high electrocatalytic performance for oxygen reduction reaction. J Power Sources. 2014;261:238-44.

[42] Wang R, Zhou T, Wang H, Feng H, Ji S. Lysine-derived mesoporous carbon nanotubes as a proficient non-precious catalyst for oxygen reduction reaction. J Power Sources. 2014;269:54-60.

[43] Wang RF, Liao SJ, Liu HY, Meng H. Synthesis and characterization of Pt-Se/C electrocatalyst for oxygen reduction and its tolerance to methanol. J Power Sources. 2007;171:471-6.

[44] Wang W, Wang R, Ji S, Feng H, Wang H, Lei Z. Pt overgrowth on carbon supported PdFe seeds in the preparation of core–shell electrocatalysts for the oxygen reduction reaction. J Power Sources. 2010;195:3498-503.

[45] Wang W, Wang R, Wang H, Ji S, Key J, Li X, et al. An advantageous method for methanol oxidation: Design and fabrication of a nanoporous PtRuNi trimetallic electrocatalyst. J Power Sources. 2011;196:9346-51.

[46] Wu Y-N, Liao S-J, Liang Z-X, Yang L-J, Wang R-F. High-performance core–shell PdPt@Pt/C catalysts via decorating PdPt alloy cores with Pt. J Power Sources. 2009;194:805-10.

[47] Yang H, Wang H, Li H, Ji S, Davids MW, Wang R. Effect of stabilizers on the synthesis of palladium–nickel nanoparticles supported on carbon for ethanol oxidation in alkaline medium. J Power Sources. 2014;260:12-8.

[48] Zhou T, Wang H, Ji S, Linkov V, Wang R. Soybean-derived mesoporous carbon as an effective catalyst support for electrooxidation of methanol. J Power Sources. 2014;248:427-33.

2、授权专利

[1]王荣方, 康健,王辉. 一种磁性氮掺杂碳材料的制备方法,2016,中国,授权专利号:ZL 201310213880.6

[2]王荣方,杨慧娟,王辉,季山,掺杂纳米氧化锌的非贵金属催化剂的制备方法,2016.05.25,中国,授权专利号: ZL 201410081773.7.

[3]王荣方宋慧杨慧娟,王辉季山,利用动物骨头制备多孔材料的方法及作为燃料电池电极催化剂的应用,2016.04.06,中国,授权专利号: ZL 201410080389.5.

[4]王荣方,王兴谱,廖锦云,杨娟,李浩,王辉,季山,利用混合盐熔融制备过渡金属单质的方法,2018.06.12,中国,授权专利号: ZL 201610156504.1 .

[5]王荣方,闫静静,廖锦云,李浩,杨娟,王辉季山,规则有序的可控三维分级结构的过渡金属合金材料的制备方法,2018.06.12,中国,授权专利号: ZL 201610156375.6.

[6] 王荣方, 张争,马妍姣,王辉,季山. 模板法制备高比表面生物质碳材料的方法, 2016, 中国, 授权专利号: ZL201410136934.8

[7] 王荣方, 马妍姣,王辉,冯汉青,季山. 生物质非贵金属材料及其制备和应用, 2015, 中国, 授权专利号: ZL201310147577.0.

[8] 王荣方, 马妍姣,王辉,季山,冯汉青. 氮、铁修饰的碳材料的制备及应用,2015,中国,授权专利号: ZL201310147634.5.

[9] 王荣方, 马妍姣,王辉,季山. 利用浓硫酸碳化合成氮碳非金属氧还原催化剂的方法,2015,中国,授权专利号: ZL201310119388.2.

[10] 王荣方, 王凯,王辉,季山. -氮包覆磁性氧化物纳米粒子的复合材料及其制备和应用.  2016, 中国, 授权专利号: ZL201410195751.3.

科研项目

[1] 2018.1-2021.12,国家自然科学基金项目, 21766032,基于壳层隔绝保护的MxN@Pt核壳结构电催化剂的制备与性能,在研,项目负责人.

[2] 2012.01–2015.12,国家自然科学基金项目, 21163018,壳层隔绝磁性纳米粒子电催化体系构建及其在氧还原反应中应用研究,结题,项目负责人.

[3] 2014.01–2017.12,国家自然科学基金项目, 21363022,非晶态纳米合金的设计合成,表面修饰与电催化性能研究,结题,项目负责人.

[4] 2009.01–2011.12,教育部重点项目, 209129,燃料电池钯基氧还原催化剂的合成与性能研究,结题,项目负责人.