欢迎来到青岛科技大学化工学院!
当前位置: 首页   >   师资队伍   >   硕士生导师   >   正文

王荣方(化工)

作者:    信息来源:    发布时间: 2018-03-20

化工学院教师介绍:王荣方

 

个人简介

工作职位:化工学院教授,研究生导师

办公地址:青岛科技大学(四方校区)

工作邮箱:wrf38745779@126.com

研究生招生:081700化学工程与技术、085216化学工程

1994.6年本科毕业于河南大学,2005.6年硕士毕业于华南师范大学,2008.6年博士毕业于华南理工大学,获得工学博士学位。2010.11-2013.9在厦门大学固体表面物理化学国家重点实验室从事博士后研究;2011.6-2012.11在西开普大学访学;2016.5-2016.11在伦敦大学学院访学;20087月起在西北师范大学化学化工学院工作;2017年至今在青岛科技大学工作。主要从事新型电极材料研发、能源复合功能材料方面的研究。研究方向主要集中在各类金属合金电催化剂的研究和应用、复合金属氧化物的能量储存和转换研究、和碳基复合功能材料研究。近五年来指导毕业博士生、硕士生近20人。毕业学生5人在高校及中科院系统工作,2人获高级职称,8人在读博士(分别在美、德高校和科研院所及复旦大学等985高校就读)。

近年发表各类论文一百余篇,其中一区、二区论文80余篇。以该系列研究为基础已申请专利30余项,授权24项。论文总被引一千三百余次,H因子22;据20163月份ESI公布的数据,高被引论文6篇。

个人荣誉与获奖

1科研成果获奖

[1]  2010年,广东省优秀博士毕业论文;

[2]    2010年,甘肃省高校科技进步一等奖,高分子基功能材料基础研究;

[3]    2011年,教育部高等学校科学研究优秀成果二等奖,质子交换膜燃料电池的应用基础研究;

[4]    2012年,甘肃省高校科技进步一等奖,功能载体材料研究;

[5]    2014年,甘肃省高校科技进步三等奖;

[6]    2016年,甘肃省自然科学奖,二等奖,复合功能材料可控制备及性能研究。

教学情况

1、本科生课程

[1]   化工原理:108学时,本科生,约60人。

[2] 工业催化:32学时,本科生,约30人。

2研究生课程

[1]   催化剂分析测试技术:24学时,硕士研究生,约30

论文、专著与专利

1、主要论文(5年第一或通讯)

[1] Wang H, Ma Y, Wang R, Key J, Linkov V, Ji S. Liquid-liquid interface-mediated room-temperature synthesis of amorphous NiCo pompoms from ultrathin nanosheets with high catalytic activity for hydrazine oxidation. Chem Commun 2015;51:3570-3.化学一区,影响因子6.567

[2] Wang R, Ma Y, Wang H, Key J, Ji S. Gas-liquid interface-mediated room-temperature synthesis of "clean" PdNiP alloy nanoparticle networks with high catalytic activity for ethanol oxidation. Chem Commun 2014;50:12877-9. 化学一区,影响因子6.567

[3] Ji S, Ma Y, Wang H, Key J, Brett DJL, Wang R. Cage-like MnO2-Mn2O3 hollow spheres with high specific capacitance and high rate capability as supercapacitor material. Electrochim Acta. 2016;219:540-6.工程技术一区,影响因子4.803

[4] Jia J, Wang H, Ji S, Yang H, Li X, Wang R. SnO2-embedded worm-like carbon nanofibers supported Pt nanoparticles for oxygen reduction reaction. Electrochim Acta. 2014;141:13-9. 工程技术一区,影响因子4.803

[5] Ma Y, Wang H, Feng H, Ji S, Mao X, Wang R. Three-dimensional iron, nitrogen-doped carbon foams as efficient electrocatalysts for oxygen reduction reaction in alkaline solution. Electrochim Acta. 2014;142:317-23. 工程技术一区,影响因子4.803

[6] Ma Y, Wang H, Ji S, Goh J, Feng H, Wang R. Highly active Vulcan carbon composite for oxygen reduction reaction in alkaline medium. Electrochim Acta. 2014;133:391-8. 工程技术一区,影响因子4.803

[7] Song H, Li H, Wang H, Key J, Ji S, Mao X, et al. Chicken bone-derived N-doped porous carbon materials as an oxygen reduction electrocatalyst. Electrochim Acta. 2014;147:520-6. 工程技术一区,影响因子4.803

[8] Wang H, Liu Z, Ji S, Wang K, Zhou T, Wang R. Ethanol oxidation activity and structure of carbon-supported Pt-modified PdSn-SnO2 influenced by different stabilizers. Electrochim Acta. 2013;108:833-40. 工程技术一区,影响因子4.803

[9] Wang KL, Wang H, Pasupathi S, Linkov V, Ji S, Wang RF. Palygorskite promoted PtSn/carbon catalysts and their intrinsic catalytic activity for ethanol oxidation. Electrochim Acta. 2012;70:394-401.

[10] Wang R, Wang H, Li H, Wang W, Key J, Khotseng L, et al. An Fe@Fe3C-inserted carbon nanotube/graphite composite support providing highly dispersed Pt nanoparticles for ethanol oxidation. Electrochim Acta. 2014;132:251-7. 工程技术一区,影响因子4.803

[11] Ma Y, Wang H, Key J, Linkov V, Ji S, Mao X, et al. Ultrafine iron oxide nanoparticles supported on N-doped carbon black as an oxygen reduction reaction catalyst. Int J Hydrogen Energy. 2014;39:14777-82.工程技术二区,影响因子3.205

[12] Wang K, Wang R, Li H, Wang H, Mao X, Linkov V, et al. N-doped carbon encapsulated Co3O4 nanoparticles as a synergistic catalyst for oxygen reduction reaction in acidic media. Int J Hydrogen Energy. 2015;40:3875-82. 工程技术二区,影响因子3.205

[13] Wang R, Liu Z, Ma Y, Wang H, Linkov V, Ji S. Heterostructure core PdSn–SnO2 decorated by Pt as efficient electrocatalysts for ethanol oxidation. Int J Hydrogen Energy. 2013;38:13604-10. 工程技术二区,影响因子3.205

[14] Wang R, Wang H, Wang X, Liao S, Linkov V, Ji S. Effect of the structure of Ni nanoparticles on the electrocatalytic activity of Ni@Pd/C for formic acid oxidation. Int J Hydrogen Energy. 2013;38:13125-31. 工程技术二区,影响因子3.205

[15] Wang R, Wang K, Wang H, Wang Q, Key J, Linkov V, et al. Nitrogen-doped carbon coated ZrO2 as a support for Pt nanoparticles in the oxygen reduction reaction. Int J Hydrogen Energy. 2013;38:5783-8. 工程技术二区,影响因子3.205

[16] Wang R, Zhou T, Qiu X, Wang H, Wang Q, Feng H, et al. Montmorillonite modified by CNx supported Pt for methanol oxidation. Int J Hydrogen Energy. 2013;38:10381-8. 工程技术二区,影响因子3.205

[17] Yang H, Wang H, Ji S, Linkov V, Wang R. Synergy between isolated-Fe3O4 nanoparticles and CNx layers derived from lysine to improve the catalytic activity for oxygen reduction reaction. Int J Hydrogen Energy. 2014;39:3739-45. 工程技术二区,影响因子3.205

[18] Wang X, Liao J, Li H, Wang H, Wang R. Solid-state-reaction synthesis of cotton-like CoB alloy at room temperature as a catalyst for hydrogen generation. J Colloid Interface Sci 2016;475:149-53.化学二区,影响因子3.782

[19] Ren Q, Wang R, Wang H, Key J, Brett DJL, Ji S, et al. Ranunculus flower-like Ni(OH)2@Mn2O3 as a high specific capacitance cathode material for alkaline supercapacitors. Journal of Materials Chemistry A. 2016;4:7591-5.工程技术一区,影响因子8.262

[20] Wang H, Yan J, Wang R, Li S, Brett DJL, Key J, et al. Toward high practical capacitance of Ni(OH)2 using highly conductive CoB nanochain supports. Journal of Materials Chemistry A. 2017;5:92-6. 工程技术一区,影响因子8.26

[21] Wang R, Ma Y, Wang H, Key J, Brett D, Ji S, et al. A cost effective, highly porous, manganese oxide/carbon supercapacitor material with high rate capability. Journal of Materials Chemistry A. 2016;4:5390-4. 工程技术一区,影响因子8.26

[22] Kang J, Wang H, Ji S, Key J, Wang R. Synergy among manganese, nitrogen and carbon to improve the catalytic activity for oxygen reduction reaction. J Power Sources. 2014;251:363-9. 工程技术一区,影响因子6.333

[23] Li H, Liao J, Zhang X, Liao W, Wen L, Yang J, et al. Controlled synthesis of nanostructured Co film catalysts with high performance for hydrogen generation from sodium borohydride solution. J Power Sources. 2013;239:277-83. 工程技术一区,影响因子6.333

[24] Ma Y, Li H, Wang H, Ji S, Linkov V, Wang R. Ultrafine amorphous PtNiP nanoparticles supported on carbon as efficiency electrocatalyst for oxygen reduction reaction. J Power Sources. 2014;259:87-91. 工程技术一区,影响因子6.333

[25] Ma Y, Li H, Wang H, Mao X, Linkov V, Ji S, et al. Evolution of the electrocatalytic activity of carbon-supported amorphous platinum–ruthenium–nickel–phosphorous nanoparticles for methanol oxidation. J Power Sources. 2014;268:498-507. 工程技术一区,影响因子6.333

[26] Ma Y, Li H, Wang R, Wang H, Lv W, Ji S. Ultrathin willow-like CuO nanoflakes as an efficient catalyst for electro-oxidation of hydrazine. J Power Sources. 2015;289:22-5. 工程技术一区,影响因子6.333

[27] Ma Y, Wang H, Ji S, Linkov V, Wang R. PtSn/C catalysts for ethanol oxidation: The effect of stabilizers on the morphology and particle distribution. J Power Sources. 2014;247:142-50. 工程技术一区,影响因子6.333

[28] Ma Y, Wang H, Key J, Ji S, Lv W, Wang R. Control of CuO nanocrystal morphology from ultrathin “willow-leaf” to “flower-shaped” for increased hydrazine oxidation activity. J Power Sources. 2015;300:344-50. 工程技术一区,影响因子6.333

[29] Ma Y, Wang R, Wang H, Key J, Ji S. Control of MnO2 nanocrystal shape from tremella to nanobelt for ehancement of the oxygen reduction reaction activity. J Power Sources. 2015;280:526-32. 工程技术一区,影响因子6.333

[30] Wang H, Ren Q, Brett DJL, He G, Wang R, Key J, et al. Double-shelled tremella-like NiO@Co3O4@MnO2 as a high-performance cathode material for alkaline supercapacitors. J Power Sources. 2017;343:76-82. 工程技术一区,影响因子6.333

[31] Wang R, Da H, Wang H, Ji S, Tian Z. Selenium functionalized carbon for high dispersion of platinum–ruthenium nanoparticles and its effect on the electrocatalytic oxidation of methanol. J Power Sources. 2013;233:326-30. 工程技术一区,影响因子6.333

[32] Wang R, Song H, Li H, Wang H, Mao X, Ji S. Mesoporous nitrogen-doped carbon derived from carp with high electrocatalytic performance for oxygen reduction reaction. J Power Sources. 2015;278:213-7. 工程技术一区,影响因子6.333

[33] Wang R, Wang H, Zhou T, Key J, Ma Y, Zhang Z, et al. The enhanced electrocatalytic activity of okara-derived N-doped mesoporous carbon for oxygen reduction reaction. J Power Sources. 2015;274:741-7. 工程技术一区,影响因子6.333

[34] Wang R, Wang K, Wang Z, Song H, Wang H, Ji S. Pig bones derived N-doped carbon with multi-level pores as electrocatalyst for oxygen reduction. J Power Sources. 2015;297:295-301. 工程技术一区,影响因子6.333

[35] Wang R, Zhou T, Li H, Wang H, Feng H, Goh J, et al. Nitrogen-rich mesoporous carbon derived from melamine with high electrocatalytic performance for oxygen reduction reaction. J Power Sources. 2014;261:238-44. 工程技术一区,影响因子6.333

[36] Wang R, Zhou T, Wang H, Feng H, Ji S. Lysine-derived mesoporous carbon nanotubes as a proficient non-precious catalyst for oxygen reduction reaction. J Power Sources. 2014;269:54-60. 工程技术一区,影响因子6.333

[37] Yang H, Wang H, Li H, Ji S, Davids MW, Wang R. Effect of stabilizers on the synthesis of palladium–nickel nanoparticles supported on carbon for ethanol oxidation in alkaline medium. J Power Sources. 2014;260:12-8. 工程技术一区,影响因子6.333

[38] Zhou T, Wang H, Ji S, Linkov V, Wang R. Soybean-derived mesoporous carbon as an effective catalyst support for electrooxidation of methanol. J Power Sources. 2014;248:427-33. 工程技术一区,影响因子6.333

[39] Wang H, Luo R, Liao S, Key J, Ji S, Wang R. Surfacial carbonized palygorskite as support for high-performance Pt-based electrocatalysts. J Solid State Electrochem 2013;17:2009-15.工程技术二区,影响因子2.327

[40] Wang H, Wang W, Key J, Ji S, Ma Y, Khotseng L, et al. Sponge-like carbon containing nitrogen and iron provides a non-precious oxygen reduction catalyst. J Solid State Electrochem 2015;19:1181-6. 工程技术二区,影响因子2.327

[41] Wang H, Zhang Z, Yang Y, Wang K, Ji S, Key J, et al. A Co-N-doped carbonized egg white as a high-performance, non-precious metal, electrocatalyst for oxygen reduction. J Solid State Electrochem 2015;19:1727-33. 工程技术二区,影响因子2.327

[42] Wang R, Jia J, Wang H, Wang Q, Ji S, Tian Z. CNx-modified Fe3O4 as Pt nanoparticle support for the oxygen reduction reaction. J Solid State Electrochem 2013;17:1021-8. 工程技术二区,影响因子2.327

[43] Wang XL, Wang H, Wang RF, Wang QZ, Lei ZQ. Carbon-supported platinum-decorated nickel nanoparticles for enhanced methanol oxidation in acid media. J Solid State Electrochem 2012;16:1049-54. 工程技术二区,影响因子2.327

[44] Yang H, Wang H, Ji S, Ma Y, Linkov V, Wang R. Nanostructured Pt supported on cocoon-derived carbon as an efficient electrocatalyst for methanol oxidation. J Solid State Electrochem 2014;18:1503-12. 工程技术二区,影响因子2.327

[45] Jia J, Wang H, Li H, Ji S, Yang H, Wang R. Chain-like SnO2-CNx Nanocomposite Supported Pt Nanoparticles and Their Application in the Electrocatalytic Oxidation of Ethanol in Acid Medium. J Electrochem Soc. 2014;161:H860-H6.工程技术二区,影响因子3.014

[46] Mao X, Yang L, Yang J, Key J, Ji S, Wang H, et al. A Volcano Curve: Optimizing Activity of Shell-Core PtxRuy@PdCu/C Catalysts for Methanol Oxidation by Tuning Pt/Ru Ratio. J Electrochem Soc. 2013;160:H219-H23. 工程技术二区,影响因子3.014

[47] Wang H, Da H, Ji S, Liao S, Wang R. Selenium-Functionalized Carbon as a Support for Platinum Nanoparticles with Improved Electrochemical Properties for the Oxygen Reduction Reaction and CO Tolerance. J Electrochem Soc. 2013;160:H266-H70. 工程技术二区,影响因子3.014

[48]Wang H, Ma Y, Lv W, Ji S, Key J, Wang R. Platinum-Tin Nanowires Anchored on a Nitrogen-Doped Nanotube Composite Embedded with Iron/Iron Carbide Particles as an Ethanol Oxidation Electrocatalyst. J Electrochem Soc. 2015;162:H79-H85. 工程技术二区,影响因子3.014

[49] Wang H, Wang K, Key J, Ji S, Linkov V, Wang R. Egg White Derived Tremella-Like Mesoporous Carbon as Efficient Non-Precious Electrocatalyst for Oxygen Reduction. J Electrochem Soc. 2014;161:H637-H42. 工程技术二区,影响因子3.014

[50] Yang H, Li H, Wang H, Ji S, Key J, Wang R. Fe(III) –Induced N Enrichment in the Surface of Carbon Materials Derived from Silk Fibroins and Its Effect on Electrocatalytic Oxygen Reduction. J Electrochem Soc. 2014;161:F795-F802. 工程技术二区,影响因子3.014

[51] Zhang XT, Wang H, Key JL, Linkov V, Ji S, Wang XL, et al. Strain Effect of Core-Shell Co@Pt/C Nanoparticle Catalyst with Enhanced Electrocatalytic Activity for Methanol Oxidation. J Electrochem Soc. 2012;159:B270-B6. 工程技术二区,影响因子3.014

[52] Kang J, Wang R, Wang H, Liao S, Key J, Linkov V, et al. Effect of Ni Core Structure on the Electrocatalytic Activity of Pt-Ni/C in Methanol Oxidation. Materials. 2013;6:2689-700. 工程技术二区,影响因子2.728

[53] Ma Y, Wang R, Wang H, Liao S, Key J, Linkov V, et al. The Effect of PtRuIr Nanoparticle Crystallinity in Electrocatalytic Methanol Oxidation. Materials. 2013;6:1621-31. 工程技术二区,影响因子2.728

[54] Ma Y, Wang R, Wang H, Linkov V, Ji S. Evolution of nanoscale amorphous, crystalline and phase-segregated PtNiP nanoparticles and their electrocatalytic effect on methanol oxidation reaction. PCCP 2014;16:3593-602.化学二区,影响因子4.449

[55] Wang H, Liu Z, Ma Y, Julian K, Ji S, Linkov V, et al. Synthesis of carbon-supported PdSn-SnO2 nanoparticles with different degrees of interfacial contact and enhanced catalytic activities for formic acid oxidation. PCCP 2013;15:13999-4005. 化学二区,影响因子4.449

[56] Ma Y, Wang H, Li H, Key J, Ji S, Wang R. Synthesis of ultrafine amorphous PtP nanoparticles and the effect of PtP crystallinity on methanol oxidation. RSC Advances. 2014;4:20722-8.化学二区,3.289

[57] Ma Y, Wang H, Lv W, Ji S, Pollet BG, Li S, et al. Amorphous PtNiP particle networks of different particle sizes for the electro-oxidation of hydrazine. RSC Advances. 2015;5:68655-61. 化学二区,3.289

[58] Ma Y, Wang R, Wang H, Key J, Ji S. Room-temperature synthesis with inert bubble templates to produce "clean" PdCoP alloy nanoparticle networks for enhanced hydrazine electro-oxidation. RSC Advances. 2015;5:9837-42. 化学二区,3.289

[59] Wang H, Wang K, Song H, Li H, Ji S, Wang Z, et al. N-doped porous carbon material made from fish-bones and its highly electrocatalytic performance in the oxygen reduction reaction. RSC Advances. 2015;5:48965-70. 化学二区,3.289

[60] Wang K, Wang H, Ji S, Feng H, Linkov V, Wang R. Biomass-derived activated carbon as high-performance non-precious electrocatalyst for oxygen reduction. RSC Advances. 2013;3:12039-42. 化学二区,3.289

[61] Zhang Z, Li H, Yang Y, Key J, Ji S, Ma Y, et al. Cow dung-derived nitrogen-doped carbon as a cost effective, high activity, oxygen reduction electrocatalyst. RSC Advances. 2015;5:27112-9. 化学二区,3.289

[62] Zhou T, Wang H, Key J, Ji S, Linkov V, Wang R. Highly dispersed ultrafine Pt nanoparticles on hydrophilic N-doped carbon tubes for improved methanol oxidation. RSC Advances. 2013;3:16949-53. 化学二区,3.289

2、部分授权专利

[1]    王荣方, 康健,王辉. 一种磁性氮掺杂碳材料的制备方法,2016,中国,授权专利号:ZL 201310213880.6 .

[2]    王荣方, 马妍姣,王辉,季山. 利用浓硫酸碳化合成氮碳非金属氧还原催化剂的方法,2015,中国,授权专利号: ZL201310119388.2.

[3]    王荣方, 杨慧娟,王辉,季山. 掺杂纳米氧化锌的非贵金属催化剂的制备方法, 2016, 中国, 授权专利号: ZL201410081773.7.

[4]    王荣方, 王凯,王辉,季山. -氮包覆磁性氧化物纳米粒子的复合材料及其制备和应用.  2016, 中国, 授权专利号: ZL201410195751.3.

[5] 王荣方, 张争,马妍姣,王辉,季山. 模板法制备高比表面生物质碳材料的方法, 2016, 中国, 授权专利号: ZL201410136934.8

[6] 王荣方,宋慧,杨慧娟,王辉,季山. 利用动物骨头制备多孔材料的方法及作为燃料电池电极催化剂的应用, 2016, 中国, 授权专利号: ZL201410080389.5.

[7] 王荣方, 马妍姣,王辉,冯汉青,季山. 生物质非贵金属材料及其制备和应用, 2015, 中国, 授权专利号: ZL201310147577.0.

[8] 王荣方, 马妍姣,王辉,季山,冯汉青. 氮、铁修饰的碳材料的制备及应用,2015,中国,授权专利号: ZL201310147634.5.

承担的主要科研项目

[1]    2012.01–2015.12, 国家自然科学基金项目, 21163018, 壳层隔绝磁性纳米粒子电催化体系构建及其在氧还原反应中应用研究, 结题, 项目负责人.

[2]   2014.01–2017.12, 国家自然科学基金项目, 21363022, 非晶态纳米合金的设计合成,

表面修饰与电催化性能研究, 在研, 项目负责人.

[3]    2009.01–2011.12, 教育部重点项目, 209129, 燃料电池钯基氧还原催化剂的合成与性能研究, 结题, 项目负责人.

[4]    2011.9 -2013.8,南非科技部自然科学基金项目,Electrocatalsyts for Low Temperature Fuel Cells (SUR2008060900021) ,结题,项目负责人.

[5]    2011.6-2013.6,中国博士后科学基金二等资助,核-壳结构磁性纳米粒子在氧还原反应体系中的应用及机理研究(20110490847),结题,项目负责人.

[6]    2012.9-2013.9, 中国博士后科学基金特别资助,非晶态纳米合金的表面修饰与电催化性能研究(2012T50587.